FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

نویسندگان

  • Jesús A. De Loera
  • Raymond Hemmecke
  • Matthias Köppe
  • Robert Weismantel
چکیده

We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixedinteger sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficients and Roots of Ehrhart Polynomials

The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...

متن کامل

ar X iv : 0 70 6 . 41 78 v 1 [ m at h . C O ] 2 8 Ju n 20 07 Lattice polytopes of degree 2 Jaron Treutlein

Abstract. A theorem of Scott gives an upper bound for the normalized volume of lattice polygons with exactly i > 0 interior lattice points. We give a new proof for this theorem and classify polygons with maximal volume. Then we show that the same bound is true for the normalized volume of lattice polytopes of degree 2 even in higher dimension. From a theorem of Victor Batyrev the finiteness of ...

متن کامل

ar X iv : m at h / 04 02 14 8 v 1 [ m at h . C O ] 9 F eb 2 00 4 COEFFICIENTS AND ROOTS OF EHRHART POLYNOMIALS

The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...

متن کامل

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

We complete the complexity classification by degree of minimizing a polynomial in two variables over the integer points in a polyhedron. Previous work shows that in two variables, optimizing a quadratic polynomial over the integer points in a polyhedral region can be done in polynomial time, while optimizing a quartic polynomial in the same type of region is NP-hard. We close the gap by showing...

متن کامل

Notes on the Roots of Ehrhart Polynomials

We determine lattice polytopes of smallest volume with a given number of interior lattice points. We show that the Ehrhart polynomials of those with one interior lattice point have largest roots with norm of order n , where n is the dimension. This improves on the previously best known bound n and complements a recent result of Braun [8] where it is shown that the norm of a root of a Ehrhart po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008